60 research outputs found

    When gratitude and cooperation between friends affect inter-brain connectivity for EEG

    Get PDF
    Background Recently several studies in the psychological and social field have investigated the social function of gift exchange as a useful way for the consolidation of interpersonal and social relationships and the implementation of prosocial behaviors. Specifically, the present research wanted to explore if gift exchange, increased emotional sharing, gratitude and interpersonal cooperation, leading to an improvement in cognitive and behavioral performance. In this regard, neural connectivity and cognitive performance of 14 pairs of friends were recorded during the development of a joint attention task that involved a gift exchange at the beginning or halfway through the task. The moment of gift exchange was randomized within the pairs: for seven couples, it happened at task beginning, for the remaining seven later. Individuals' simultaneous brain activity was recorded through the use of two electroencephalograms (EEG) systems that were used in hyperscanning. Results The results showed that after gift exchange there was an improvement in behavioral performance in terms of accuracy. For what concerns EEG, instead, an increase of delta and theta activation was observed in the dorsolateral prefrontal cortex (DLPFC) when gift exchange occurred at the beginning of the task. Furthermore, an increase in neural connectivity for delta and theta bands was observed. Conclusion The present research provides a significant contribution to the exploration of the factors contributing to the strengthening of social bonds, increasing cooperation, gratitude and prosocial behavior

    Donate or receive? Social hyperscanning application with fNIRS

    Get PDF
    Recent research in social neuroscience has shown how prosocial behavior can increase perceived self-efficacy, perception of cognitive abilitites and social interactions. The present research explored the effect of prosocial behavior, that is giving a gift during an interpersonal exchange, measuring the hyperscanning among two brains. The experiment aimed to analyze the behavioral performance and the brain-to-brain prefrontal neural activity of 16 dyads during a joint action consisting in a cooperative game, which took place in a laboratory setting controlled by an experimenter, to play before and after a gift exchange. Two different types of gift exchange were compared: experiential and material. Functional Near Infrared Spectroscopy (fNIRS) was applied to record brain activity. Inter-brain connectivity was calculated before and after the gift exchange. In behavioral data, a behavioral performance increase was observed after gift exchange, with accuracy improvement and response times decrease. Regarding intra-brain analyses, an increase in oxygenated hemoglobin was detected, especially in the dorsolateral prefrontal cortex (DLPFC) in both donor and receiver; and in the dorsal part of the premotor cortex (DPMC) in the donor. Moreover, as regards the gift type, greater activation in the DPLFC emerged in both the donor and the receiver after receiving an experiential gift. Finally, the results of the inter-brain connectivity analysis showed that after gift exchange, the donor and receiver brain activity was more synchronized in the DPMC and Frontal Eye Fields (FEF) areas. The present study provides a contribution to the identification of inter-brain functional connectivity when prosocial behaviors are played out

    Multilevel analysis of facial expressions of emotion and script: Self-report (arousal and valence) and psychophysiological correlates

    Get PDF
    Background: The paper explored emotion comprehension in children with regard to facial expression of emotion. The effect of valence and arousal evaluation, of context and of psychophysiological measures was monitored. Indeed subjective evaluation of valence (positive vs. negative) and arousal (high vs. low), and contextual (facial expression vs. facial expression and script) variables were supposed to modulate the psychophysiological responses. Methods: Self-report measures (in terms of correct recognition, arousal and valence attribution) and psychophysiological correlates (facial electromyography, EMG, skin conductance response, SCR, and heart rate, HR) were observed when children (N = 26; mean age = 8.75 y; range 6-11 y) looked at six facial expressions of emotions (happiness, anger, fear, sadness, surprise, and disgust) and six emotional scripts (contextualized facial expressions). The competencies about the recognition, the evaluation on valence and arousal was tested in concomitance with psychophysiological variations. Specifically, we tested for the congruence of these multiple measures. Results: Log-linear analysis and repeated measure ANOVAs showed different representations across the subjects, as a function of emotion. Specifically, children' recognition and attribution were well developed for some emotions (such as anger, fear, surprise and happiness), whereas some other emotions (mainly disgust and sadness) were less clearly represented. SCR, HR and EMG measures were modulated by the evaluation based on valence and arousal, with increased psychophysiological values mainly in response to anger, fear and happiness. Conclusions: As shown by multiple regression analysis, a significant consonance was found between self-report measures and psychophysiological behavior, mainly for emotions rated as more arousing and negative in valence. The multilevel measures were discussed at light of dimensional attribution model

    The effects of a cognitive pathway to promote class creative thinking. An experimental study on Italian primary school students

    Get PDF
    The goal of this experimental research was to demonstrate that creative thinking could be trained in primary school children. After asserting the difficulty to determine a unique definition of creativity \u2013 the concept fits to several fields and areas of interests \u2013 the capacity to produce numerous ideas and to think divergently was chosen as the framework within creativity as a way of thinking that can be assessed and measured. Even though creativity is challenging to define and consequently to operationalize, tests exist with the purpose to evaluate creativity levels in individuals. Starting from the Test of Child Creativity (TCI) an Italian mental reactive aimed at measuring the potential of creative thinking in individual children, a Group Creativity Assessment (gTCI) was made up with the objective to test 224 children belonging to 10 primary school classes (5 second grades and 5 third grades), achieving creativity scores of groups. The aim was to investigate whether children\u2019s attitude to think divergently would improve after participating in a creativity training made up of 10 interactive one-hour long sessions. For that reason, all the sample of children were tested in T0 before the training; afterward 8 out of the 10 classes were weekly trained, before being all 10 classes tested again in T1, 10 weeks after T0. The hypothesis was that the trained classes would have improved in creative thinking, whereas the control groups would have not. It was therefore demonstrated the efficacy of the specific technique to train creative thinking that was conceived, developed and administered to the children

    A gift for gratitude and cooperative behavior. Brain and cognitive effects

    Get PDF
    Recently, different psychological studies have been interested in identifying the factors that regulate the development and maintenance of long-lasting interpersonal and social relationships. Specifically, the present research explored the link between gift exchange, gratitude and cognitive effects. The behavioral performance and neural activity of 32 participants were recorded during a cooperative game to be played before and after gift exchange. Specifically, participants had to perform the task coupled with a dear friend. Half of the couples were asked to exchange a gift before the task performance; the other half was asked to exchange a gift halfway through the task performance. For hemodynamic brain responses, functional near-infrared spectroscopy was used. Results showed that an increase in cognitive performance occurred after the exchange of gifts, with improved accuracy and lower response times in task performance. Regarding hemodynamic responses, an increase in oxygenated hemoglobin was detected, especially in the dorsolateral prefrontal cortex following the gift exchange. Furthermore, it was observed that gift exchange before the beginning of the task increased the performance level. The present study provides a significant contribution to the identification of those factors that enable the increased cognitive performance based on cooperative relationships

    Brains in Competition : Improved Cognitive Performance and Inter-Brain Coupling by Hyperscanning Paradigm with Functional Near-Infrared Spectroscopy

    Get PDF
    Hyperscanning brain paradigm was applied to competitive task for couples of subjects. Functional Near-Infrared Spectroscopy (fNIRS) and cognitive performance were considered to test inter-brain and cognitive strategy similarities between subjects (14 couples) during a joint-action. We supposed increased brain-to-brain coupling and improved cognitive outcomes due to joint-action and the competition. As supposed, the direct interaction between the subjects and the observed external feedback of their performance (an experimentally induced fictitious feedback) affected the cognitive performance with decreased Error Rates (ERs), and Response Times (RTs). In addition, fNIRS measure (oxyhemoglobin, O2Hb) revealed an increased brain activity in the prefrontal cortex (PFC) in post-feedback more than pre-feedback condition. Moreover, a higher inter-brain similarity was found for the couples during the task, with higher matched brain response in post-feedback condition than pre-feedback. Finally, a significant increased prefrontal brain lateralization effect was observed for the right hemisphere. Indeed the right PFC was more responsive with similar modalities within the couple during the post-feedback condition. The joined-task and competitive context was adduced to explain these cognitive performance improving, synergic brain responsiveness within the couples and lateralization effects (negative emotions)

    Empathy in Negative and Positive Interpersonal Interactions : What is the Relationship Between Central (EEG, fNIRS) and Peripheral (Autonomic) Neurophysiological Responses?

    Get PDF
    Emotional empathy is crucial to understand how we respond to interpersonal positive or negative situations. In the present research, we aim at identifying the neural networks and the autonomic responsiveness underlying the human ability to perceive and empathize with others' emotions when positive (cooperative) or negative (uncooperative) interactions are observed. A multimethodological approach was adopted to elucidate the reciprocal interplay of autonomic (peripheral) and central (cortical) activities in empathic behavior. Electroencephalography (EEG, frequency band analysis) and hemodynamic (functional Near-Infrared Spectroscopy, fNIRS) activity were all recorded simultaneously with systemic skin conductance response (SCR) and heart rate (HR) measurements as potential biological markers of emotional empathy. Subjects were required to empathize in interpersonal interactions. As shown by fNIRS/EEG measures, negative situations elicited increased brain responses within the right prefrontal cortex (PFC), whereas positive situations elicited greater responses within the left PFC. Therefore, a relevant lateralization effect was induced by the specific valence (mainly for negative conditions) of the emotional interactions. Also, SCR was modulated by positive/negative conditions. Finally, EEG activity (mainly low-frequency theta and delta bands) intrinsically correlated with the cortical hemodynamic responsiveness, and they both predicted autonomic activity. The integrated central and autonomic measures better elucidated the significance of empathic behavior in interpersonal interactions

    Cooperative leadership in hyperscanning. Brain and body synchrony during manager-employee interactions

    Get PDF
    Recent advances in neurosciences permitted to extend the knowledge about brain functioning to the organizational field with a specific interest to leadership, with the extent to explore more proficient ways of managing. In the present research, through a hyperscanning paradigm, EEG and autonomic synchrony was explored during performance reviews to investigate if different leadership styles (partecipative vs. authoritative), could be associated with different dyadic engagement. Analysis involved coherence computation assessing the strenght of inter-brain and body synchrony, which revealed the presence of a higher emotional synchronization for both neural and bodily reactions mainly for partecipative style

    Functional EEG connectivity during competition

    Get PDF
    Social behavior and interactions pervasively shape and influence our lives and relationships. Competition, in particular, has become a core topic in social neuroscience since it stresses the relevance and salience of social comparison processes between the inter-agents that are involved in a common task. The majority of studies, however, investigated such kind of social interaction via one-person individual paradigms, thus not taking into account relevant information concerning interdependent participants' behavioral and neural responses. In the present study, dyads of volunteers participated in a hyperscanning paradigm and competed in a computerized attention task while their electrophysiological (EEG) activity and performance were monitored and recorded. Behavioral data and inter-brain coupling measures based on EEG frequency data were then computed and compared across different experimental conditions: a control condition (individual task, t0), a first competitive condition (pre-feedback condition, t1), and a second competitive condition following a positive reinforcing feedback (post-feedback condition, t2)

    Hemodynamic (fNIRS) and EEG (N200) correlates of emotional inter-species interactions modulated by visual and auditory stimulation

    Get PDF
    The brain activity, considered in its hemodynamic (optical imaging: functional Near-Infrared Spectroscopy, fNIRS) and electrophysiological components (event-related potentials, ERPs, N200) was monitored when subjects observed (visual stimulation, V) or observed and heard (visual + auditory stimulation, VU) situations which represented inter-species (human-animal) interactions, with an emotional positive (cooperative) or negative (uncooperative) content. In addition, the cortical lateralization effect (more left or right dorsolateral prefrontal cortex, DLPFC) was explored. Both ERP and fNIRS showed significant effects due to emotional interactions which were discussed at light of cross-modal integration effects. The significance of inter-species effect for the emotional behavior was considered. In addition, hemodynamic and EEG consonant results and their value as integrated measures were discussed at light of valence effect
    • …
    corecore